|本期目录/Table of Contents|

[1]姜 媛,黄志良*,陈常连*,等.铝掺杂磷灰石型硅酸镧电解质的电导机理[J].武汉工程大学学报,2022,44(01):48-54.[doi:10.19843/j.cnki.CN42-1779/TQ.202010006]
 JIANG Yuan,HUANG Zhiliang*,CHEN Changlian*,et al.Conductance Mechanism of Al-Doped Apatite-Type Lanthanum Silicate Electrolyte[J].Journal of Wuhan Institute of Technology,2022,44(01):48-54.[doi:10.19843/j.cnki.CN42-1779/TQ.202010006]
点击复制

铝掺杂磷灰石型硅酸镧电解质的电导机理(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年01期
页码:
48-54
栏目:
材料科学与工程
出版日期:
2022-02-28

文章信息/Info

Title:
Conductance Mechanism of Al-Doped Apatite-Type Lanthanum Silicate Electrolyte
文章编号:
1674 - 2869(2022)01 - 0048 - 07
作者:
姜 媛黄志良*陈常连*鲁 冕吴昌胜陈 石
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
JIANG YuanHUANG Zhiliang*CHEN Changlian*LU MianWU ChangshengCHEN Shi
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
燃烧法硅酸镧固体电解质铝掺杂电导增强机理
Keywords:
combustion methodlanthanum silicatesolid electrolyteAl-dopedenhancing mechanism of conductance
分类号:
O646
DOI:
10.19843/j.cnki.CN42-1779/TQ.202010006
文献标志码:
A
摘要:
采用燃烧法在600 ℃下5~7 min内成功制备了铝掺杂的La9.33Si6-xAlxO26-0.5x(x=0.5,1.0,1.5,2.0)(LSAO)固体电解质粉体,在800 ℃预烧12 h后,经压制成型、烧结制得LSAO陶瓷体。X射线衍射、X射线光电子能谱、傅里叶变换红外光谱和扫描电子显微镜证实燃烧法制备的LSAO纯度高,具有典型的P63/m磷灰石型结构;掺杂的Al3+替换了Si4+进入了[SiO4]四面体结构中形成[Si(Al)O4],并产生了氧空位;在1 500 ℃烧结3 h得到烧结性能最佳的LSAO陶瓷体。电化学阻抗谱显示当掺量x<0.5时,La9.33Si6O26(LSO)的电导率随掺量的增加而增强;当掺量x>0.5时,La9.33Si6O26(LSO)的电导率随掺量的增加而降低,这归因于Al3+掺杂形成氧空位,减小了氧离子传输过程中的空间阻力,电导率增大;然而,当Al3+掺量过多,LSAO结构中间隙氧浓度大量减少,电导率降低。当掺量x=0.5时,电导率在800 ℃达到最大值为1.26×10-2 S/cm。该电导增强机理为氧空位缺陷增强电导机理。
Abstract:
The Al-doped La9.33Si6-xAlxO26-0.5x (LSAO,x=0.0,0.5,1.0,1.5,2.0) solid electrolyte powders were successfully prepared at 600 ℃ within 5-7 minutes by combustion method. The LSAO ceramics were prepared from the powder calcined at 800 ℃ for 12 h via pressing, molding and sintering in sequence. The analyses of X-ray diffraction,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy and scanning electron microscopy confirm that the LSAOs prepared by combustion method possess high purity and typical P63/m apatite structure. The doped Al3+ ions replace Si4+ ions and form [Si(Al)O4] in tetrahedral [SiO4],generating the oxygen vacancy. The LSAO ceramics with the best sintering properties were obtained by sintering at 1 500 ℃ for 3 h. The electrochemical impedance spectrum shows that when x<0.5,the conductivity of LSAO increases with the increase of x,and when x>0.5,the conductivity of LSAO decreases with the increase of x,which is attributed to the formation of oxygen vacancy by Al3+ doping,thus reducing the spatial resistance of oxygen ions transport and increasing the conductivity. However,excessive incorporation of Al3+ leads to the large reduction in interstitial oxygen concentration and the decrease in conductivity. When x=0.5,the maximum conductivity reaches 1.26×10-2 S/cm(t=800 ℃). The mechanism of enhanced conductance is oxygen vacancy defects enhancement mechanism.

参考文献/References:

[1] DING X F,HUA G X,DING D,et al. Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping [J]. Journal of Power Sources,2016,306:630-635.[2] YOSHIOKA H. Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations [J]. Journal of the American Ceramic Society,2007,90(10):3099-3105.[3] XIANG J,CHEN H Q,OUYANG J H,et al. Stability and compatibility of lanthanum silicates electrolyte with standard cathode materials [J]. Ceramics International,2019,45(5):6183-6189.[4] LóPEZ D M,MARTíN-SEDE?O M C,MARTíNEZ J P,et al. Evaluation of apatite silicates as solid oxide fuel cell electrolytes [J]. Journal of Power Sources,2010,195(9):2496-2506.[5] WU R F,PAN W,REN X R,et al. An extremely low thermal conduction ceramic:RE9.33(SiO4)6O2 silicate oxyapatite [J]. Acta Materialia,2012,60(15):5536-5544.[6] MINESHIGE A,OHNISHI Y,SAKAMOTO R,et al. Effect of cation doping on ionic and electronic properties for lanthanum silicate-based solid electrolytes [J]. Solid State Ionics,2011,192(1):195-199.[7] KOBAYASHI K, HIRAI K, SUZUKI T S, et al. Sinterable powder fabrication of lanthanum silicate oxyapatite based on solid-state reaction method [J]. Journal of the Ceramic Society of Japan,2015,123(4):274-279.[8] DAI L, HAN W, LI Y H, et al. Synthesis and characterization of Al3+ and M(M=W6+,In3+,Nb5+,Mg2+) co-doped lanthanum silicate oxy-apatite electrolytes [J]. International Journal of Hydrogen Energy,2016,41(26):11340-11350.[9] ZHAO Y Q, DAI L, HE Z X, et al. Synthesis and characterization of Ba2+ and W6+ co-doped apatite-type lanthanum silicate electrolytes [J]. Ceramics International,2020,46(4):5420-5429.[10] ZHANG L,HE H Q,WU H W,et al. Synthesis and characterization of doped La9ASi6O26.5(A=Ca,Sr,Ba)oxyapatite electrolyte by a water-based gel-casting route [J]. International Journal of Hydrogen Energy,2011,36(11):6862-6874.[11] CAO X G,JIANG S P. Effect of Sr and Al or Fe co-doping on the sinterability and conductivity of lanthanum silicate oxyapatite electrolytes for solid oxide fuel cells [J]. International Journal of Hydrogen Energy,2014,39(33):19093-19101.[12] 吴昌胜,雷红,黄江胜,等. 锶锌双掺杂磷灰石型硅酸镧电解质的制备与表征[J]. 武汉工程大学学报,2019,41(5):453-456.[13] TAO S W, IRVINE J T S. Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process [J]. Materials Research Bulletin,2001,36(7/8):1245-1258.[14] YAMAGATA C, ELIAS D R,PAIVA M R S,et al. Facile preparation of apatite-type lanthanum silicate by a new water-based sol-gel process [J]. Materials Research Bulletin,2013,48(6):2227-2231.[15] YANG T R,ZHAO H L,HAN J,et al. Synthesis and densification of lanthanum silicate apatite electrolyte for intermediate temperature solid oxide fuel cell via co-precipitation method [J]. Journal of the European Ceramic Society,2014,34(6):1563-1569.[16] MA Y Z, MOLIERE M, YU Z X, et al. Novel chemical reaction co-precipitation method for the synthesis of apatite-type lanthanum silicate as an electrolyte in SOFC [J]. Journal of Alloys and Compounds,2017,723:418-424.[17] SKJARV? S H,WEFRING E T,NESDAL S K,et al. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites [J]. Nature Communica-tions,2016,7:13745:1-8.[18] VORONKOV V V. Generation of thermal donors in silicon:oxygen aggregation controlled by self-interstitials[J]. Semiconductor Science and Technology,1993,8(12):2037-2047.

相似文献/References:

[1]喻俊,黄志良*.燃烧法制备SrAl2O4:Eu2+,Dy3+长余辉发光材料[J].武汉工程大学学报,2008,(02):73.
 YU Jun,HUANG Zhi liang.Synthesis of SrAl2O4:Eu2+,Dy3+ long afterglow phosphorby combustion[J].Journal of Wuhan Institute of Technology,2008,(01):73.
[2]胡威峰,喻俊,曹江雄,等.磷灰石型La9.33(SiO4)6O2电解质的烧结及性能[J].武汉工程大学学报,2011,(01):48.[doi:10.3969/j.issn.16742869.2011.01.013]
 HU Wei feng,YU Jun,CAO Jiang xiong,et al.Research of sintering and property of lanthanum silicate oxyapatite electrolyte materials[J].Journal of Wuhan Institute of Technology,2011,(01):48.[doi:10.3969/j.issn.16742869.2011.01.013]
[3]李文洁,刘星,魏以和*.燃烧法测定捕收剂油酸钠的方法[J].武汉工程大学学报,2011,(02):25.[doi:10.3969/j.issn.16742869.2011.02.006]
 LI Wen jie,LIU Xing,WEI Yi he.Combustion method to quantitatively determine collector sodium oleate adsorbed on minerals[J].Journal of Wuhan Institute of Technology,2011,(01):25.[doi:10.3969/j.issn.16742869.2011.02.006]
[4]陈亚男,喻俊,黄志良*,等.Sr和Nd掺杂对La9.33(SiO4)6O2电解质性能的影响[J].武汉工程大学学报,2011,(09):39.
 CHEN Yanan,YU Jun,HUANG Zhiliang,et al.Influence of Sr and Nd doping on performance of apatite La9.33(SiO4)6O2 electrolyte[J].Journal of Wuhan Institute of Technology,2011,(01):39.
[5]李文昭,黄志良*,陈常连,等.过渡元素掺杂固体电解质的制备及电性能[J].武汉工程大学学报,2016,38(4):350.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 008]
 LI Wenzhao,HUANG Zhiliang*,CHEN Changlian,et al.Preparation of Transition Elements Doped Solid Electrolyte and Its Electrical Properties[J].Journal of Wuhan Institute of Technology,2016,38(01):350.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 008]
[6]危 钰,雷 红,黄志良*,等.镁、锆离子掺杂磷酸铁锂的制备及其电化学性能[J].武汉工程大学学报,2017,39(05):450.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 008]
 WEI Yu,LEI Hong,HUANG Zhiliang*,et al.Preparation and Electrochemical Performances of Magnesium or Zircon Doped Lithium Iron Phosphates[J].Journal of Wuhan Institute of Technology,2017,39(01):450.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 008]
[7]雷 红,李文昭,马 东,等.锌掺杂La9.33(SiO4)6O2电解质的制备与电导率研究[J].武汉工程大学学报,2018,40(04):400.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 010]
 LEI Hong,LI Wenzhao,MA Dong,et al.Preparation of Zn Doped La9.33(SiO4)6O2 Electrolyte and Its Conductivity[J].Journal of Wuhan Institute of Technology,2018,40(01):400.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 010]
[8]吴昌胜,雷 红,黄江胜,等.锶锌双掺杂磷灰石型硅酸镧电解质的制备与表征[J].武汉工程大学学报,2019,(05):453.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 008]
 WU Changsheng,LEI Hong,HUANG Jiangsheng,et al.Preparation and Characterization of Strontium and Zinc DopedApatite Lanthanum Silicate Electrolyte[J].Journal of Wuhan Institute of Technology,2019,(01):453.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 008]
[9]陈 石,黄志良*,吴昌胜,等.钐和锌双掺杂La9.33(SiO4)6O2电解质的制备及其电导率[J].武汉工程大学学报,2021,43(05):520.[doi:10.19843/j.cnki.CN42-1779/TQ.201910028]
 CHEN Shi,HUANG Zhiliang*,WU Changsheng,et al.Preparation of Sm and Zn Double Doped La9.33(SiO4)6O2 Electrolyte and Its Conductivity[J].Journal of Wuhan Institute of Technology,2021,43(01):520.[doi:10.19843/j.cnki.CN42-1779/TQ.201910028]
[10]黄志良,鲁冕,石月,等.碱土掺杂硅酸镧电解质材料的制备与性能[J].武汉工程大学学报,2012,(11):44.[doi:103969/jissn16742869201211010]
 HUANG Zhi liang,LU Mian,SHI Yue,et al.Preparation and performance of Lanthanum silicate electrolyte materials doped alkali earth[J].Journal of Wuhan Institute of Technology,2012,(01):44.[doi:103969/jissn16742869201211010]

备注/Memo

备注/Memo:
收稿日期:2020-10-09基金项目:国家自然科学基金(51374155,51242010);湖北省科技支撑计划(2014BCB034);武汉工程大学研究生教育创新基金(CX2020167)作者简介:姜 媛,硕士研究生。E-mail:[email protected]*通讯作者:黄志良,博士,教授。E-mail:[email protected]; 陈常连,博士,副教授。E-mail:[email protected]引文格式:姜媛,黄志良,陈常连,等. 铝掺杂磷灰石型硅酸镧电解质的电导机理[J]. 武汉工程大学学报,2022,44(1):48-54.
更新日期/Last Update: 2022-03-01