|本期目录/Table of Contents|

[1]吴进军,朱 峰,余响林,等.氧化石墨炔的制备及光催化氧化脱硫研究[J].武汉工程大学学报,2022,44(04):384-389.[doi:10.19843/j.cnki.CN42-1779/TQ.202109009]
 WU Jinjun,ZHU Feng,YU Xiangling,et al.Preparation and Photocatalytic Oxidative Desulfurization of Graphdiyne Oxide[J].Journal of Wuhan Institute of Technology,2022,44(04):384-389.[doi:10.19843/j.cnki.CN42-1779/TQ.202109009]
点击复制

氧化石墨炔的制备及光催化氧化脱硫研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年04期
页码:
384-389
栏目:
化学与化学工程
出版日期:
2022-08-31

文章信息/Info

Title:
Preparation and Photocatalytic Oxidative Desulfurization of Graphdiyne Oxide
文章编号:
1674 - 2869(2022)04 - 0384 - 06
作者:
吴进军1朱 峰2余响林2黎俊波*1
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;
2. 武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
WU Jinjun1 ZHU Feng2 YU Xiangling2 LI Junbo*1
1. School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
2. School of Chemical Engineering and Pharmaceutical Engineering, Wuhan Institute of Technology,Wuhan 430205,China

关键词:
氧化石墨炔光催化氧化脱硫二苯并噻吩
Keywords:
graphdiyne oxide photocatalytic oxidation desulfurization dibenzothiophene
分类号:
O626
DOI:
10.19843/j.cnki.CN42-1779/TQ.202109009
文献标志码:
A
摘要:
为了提高石墨炔光催化脱硫的活性,利用浓硝酸的氧化作用将氧原子引入到石墨炔(GDY)中,形成活性位点丰富的氧化石墨炔(GDYO)。通过扫描电子显微镜、X-射线衍射、拉曼光谱、X-射线光电子能谱等表征手段对材料的结构和形貌进行了研究,所制备的GDYO骨架结构完整、材料表面具有丰富的缺陷,有利于电子的转移与活性点位的暴露,提高催化氧化性能。光催化氧化实验结果表明:在二苯并噻吩(DBT)质量浓度为1 645.15 mg/m3的模拟油、5 mg的催化剂(GDYO)、8 mL萃取剂(乙腈)和1 mL氧化剂(双氧水)的混合体系里,GDYO可以在2 h内对DBT质量浓度为1 645.15 mg/m3的模拟油取得99%以上的脱硫效率,表现出优异的光催化脱硫性能。
Abstract:
To improve the photocatalytic oxidative desulfurization activity of graphdiyne (GDY), graphdiyne oxide (GDYO) containing abundant active sites was successfully prepared with the oxidation of GDY by concentrated nitric acid. The structure and the morphology of the as-prepared material were studied by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, etc. The integrity of the framework and the abundant defects on the surface can facilitate the transfer of electrons and the exposure of active sites, thus, inducing the improvement of the catalytic oxidation performance. In the photocatalytic oxidation experiment, the mixed system can obtain a desulfurization efficiency more than 99% with dibenzothiophene dissolved in n-octane as model oil (1 645.15 mg/m3), GDYO as catalyst (5 mg), acetonitrile as extractant (8 mL), and hydrogen peroxide as oxidant (1 mL) within 2 h, showing excellent photocatalytic desulfurization performance.

参考文献/References:

[1] AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. Journal of Hazardous Materials,2016,301:259-276.

[2] KHAN N A, BHADRA B N, PARK S W, et al. Tungsten nitride, well‐dispersed on porous carbon: remarkable catalyst, produced without addition of ammonia, for the oxidative desulfurization of liquid fuel [J]. Small, 2020, 16(12): 1901564.
[3] 笪良国.层钛(铌)多聚酸盐的结构特征及光催化脱硫研究[D]. 淮南:安徽理工大学,2020.
[4] STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catalysis Today, 2010, 153(1/2): 1-68.
[5] 宋丽娟, 潘明雪, 秦玉才,等. NiY分子筛选择性吸附脱硫性能及作用机理[J]. 高等学校化学学报, 2011, 32(3):787-792.
[6] DEMBAREMBA T O, CORREIA I, HOSTEN E C, et al. New V IV o-complexes for oxidative desulfurization of refractory sulfur compounds in fuel: synthesis, structure, reactivity trend and mechanistic studies [J]. Dalton Transactions,2019,48(44): 16687-16704.
[7] FOGHT J M. Chapter 5 Whole-cell bio-processing of aromatic compounds in crude oil and fuels [J]. Studies in Surface Science & Catalysis, 2004, 151: 145-175.
[8] 甄延忠,岳林林,王丹军,等. Gd3+,Dy3+掺杂Bi2WO6的合成及光催化脱硫活性的研究[J]. 稀土, 2014(1):66-77.
[9] 接瑜. 催化汽油加氢脱硫装置国Ⅴ升级改造设计[J].石油与天然气化工,2017,46(4):11-15.
[10] 赵帅,刘亚亚,马博文,等.TiO2-β/SBA-15的制备及其光催化氧化脱硫性能[J].石油化工,2018,47(8):795-801.
[11] 陈彦焕,刘辉彪,李玉良.二维碳石墨炔研究进展与展望[J].科学通报,2016,61(26):2901-2913.
[12] JIA Z Y, LI Y J, ZUO Z C, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Accounts of Chemical Research, 2017,50(10):2470-2478.
[13] ZHOU J Y, XIE Z Q, LIU R, et al. Synthesis of ultrathin graphdiyne film using a surface template[J]. ACS Applied Materials & Interfaces, 2018, 11(3): 2632-2637.
[14] HE J J, LI X D, LU T T, et al. Graphdiyne applied for electrochemical energy storage[J]. Dalton Transactions, 2019, 48(39):14566-14574.
[15] LI J, GAO X, ZHU L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy & Environmental Science, 2020, 13(5): 1326-1346.
[16] ZHENG Y P, FENG Q, TANG N J, et al. Synthesis and photoluminescence of graphdiyne[J]. New Carbon Materials, 2018, 33(6): 516-521.
[17] GAO X, LIU H B, WANG D, et al. Graphdiyne: synthesis, properties, and applications[J]. Chemical Society Reviews, 2019, 48(3): 908-936.
[18] LI Y, ZHANG M J, HU X L, et al. Graphdiyne visible‐light photodetector with ultrafast detectivity[J]. Advanced Optical Materials,2021,9(6): 2001916.
[19] 应承展,吕秋娟,刘朝辉,等.碳材料在钙钛矿太阳能电池中的应用[J].材料工程,2019,47(6):1-10.
[20] LIU R J, LIU H B, LI Y L, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6(19):11336-11343.
[21] LI G X, LI Y L, LIU H B, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19):3256-3258.
[22] 薛永强,栾春晖,樊金串.粗糙表面对金属化学腐蚀的影响[J].材料导报,1998(2):23-24.
[23] MA W J, XUE Y F, GUO S Y, et al. Graphdiyne oxide: a new carbon nanozyme[J]. Chemical Communications, 2020, 56(38): 5115-5118.

相似文献/References:

[1]段颖姗,陈云,张文蓉,等.Cu2O/累托石纳米复合材料处理模拟染料废水试验[J].武汉工程大学学报,2011,(09):64.
 DUAN Yingshan,CHEN Yun,ZHANG Wenrong,et al.Treating dye wastewater by nanocomposites with Cu2O/rectorite[J].Journal of Wuhan Institute of Technology,2011,(04):64.

备注/Memo

备注/Memo:
收稿日期:2021-09-11
基金项目:材料复合新技术国家重点实验室(武汉理工大学)开放基金(2020-KF-17);武汉工程大学第十二届研究生创新基金(CX2020267)
作者简介:吴进军,硕士研究生。E-mail:[email protected]
*通讯作者:黎俊波,博士,教授。E-mail:[email protected]
引文格式:吴进军,朱峰,余响林,等. 氧化石墨炔的制备及光催化氧化脱硫研究[J]. 武汉工程大学学报,2022,44(4):384-389.

更新日期/Last Update: 2022-08-25