[1] 丁志纯,孙剑飞.单晶金刚石车刀在陶瓷基复合材料加工中的应用研究[J].模具制造,2024,24(4):65-69.
[2] 王伟华,代兵,王杨,等.金刚石光学窗口相关元件的研究进展[J].材料科学与工艺,2020,28(3):42-57.
[3] 王凡生,刘繁,汪建华,等.金刚石半导体器件的研究进展[J].武汉工程大学学报,2020,42(5):518-525.
[4] 高旭辉.金刚石——终极半导体的“破茧”之路[J].科学咨询(科技·管理),2024(5):240-243.
[5] 尤宜.基于金刚石NV色心的量子编码与量子计算[D].北京:北京邮电大学,2023.
[6] MUEHLE M, ASMUSSEN J, BECKER M F, et al. Extending microwave plasma assisted CVD SCD growth to pressures of 400Torr [J]. Diamond and Related Materials,2017,79:150-163.
[7] LIANG Q,CHIN C Y,LAI J,et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures [J]. Applied Physics Letters,2009,94 (2):024103.
[8] ACHARD J,TALLAIRE A,SUSSMANN R,et al. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD [J]. Journal of Crystal Growth,2005,284(3/4):396-405.
[9] 牟草源,李根壮,谢文良,等.微波等离子体化学气相沉积法制备大尺寸单晶金刚石的研究进展[J].电子与封装,2023,23(1):010104.
[10] SEDOV V,MARTYANOV A,ALTAKHOV A,et al. Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD [J]. Coatings,2020,10(10):939.
[11] 谢文良.单晶金刚石MPCVD外延生长的关键问题研究[D].长春:吉林大学,2023.
[12] TALLAIRE A, ACHARD J, BRINZA O, et al. Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates [J]. Diamond and Related Materials,2013,33:71-77.
[13] FENG M Y, JIN P, MENG X Q, et al. One-step growth of a nearly 2 mm thick CVD single crystal diamond with an enlarged surface by optimizing the substrate holder structure [J]. Journal of Crystal Growth,2023,603:127011.
[14] ASHFOLD M N R, MANKELEVICH Y A. Self-consistent modeling of microwave activated N2/CH4/H2(and N2/H2) plasmas relevant to diamond chemical vapor deposition [J]. Plasma Sources Science and Technology,2022,31(3):035005.
[15] OROZCO E A,TSYGANKOV P,BARRAGAN Y F,et al. Computational study of a microwave plasma reactor based on the TM112 mode for diamond deposition [J]. Applied Physics A,2023,129(12):842.
[16] LINNIK S A, GAYDAYCHUK A V. Application of optical emission spectroscopy for the determination of optimal CVD diamond growth parameters in abnormal glow discharge plasma [J]. Vacuum,2014,103:28-32.
[17] WENG J,WANG J H,DAI S Y,et al. Preparation of diamond films with controllable surface morphology,orientation and quality in an overmoded microwave plasma CVD chamber [J]. Applied Surface Science,2013,276:529-534.
[18] 耿传文,夏禹豪,赵洪阳,等.单晶金刚石边缘表面倾斜角度对同质外延生长的影响[J].物理学报,2018,67(24):248101.
[19] WATANABE T,TERAJI T,ITO T,et al. Monte Carlo simulations of electron transport properties of diamond in high electric fields using full band structure [J]. Journal of Applied Physics,2004,95(9):4866-4874.
[20] CENNA F, CARTIGLIA N, FRIEDL M, et al. Weightfield2:a fast simulator for silicon and diamond solid state detector [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2015,796:149-153.
[21] MAY P W, MANKELEVICH Y A. From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors:a unified model for growth rates and grain sizes [J]. The Journal of Physical Chemistry C,2008,112(32):12432-12441.
[22] 许坤,吕思远.MPCVD法生长曲面多晶金刚石薄膜研究[J].冶金与材料,2024,44(3):1-3.
[23] JEONG J H,LEE S Y, LEE W S,et al. Mechanical analysis for crack-free release of chemical-vapor-deposited diamond wafers[J]. Diamond and Related Materials,2002,11(8):1597-1605.
[24] GORE J P P,MAHONEY E J D,SMITH J A,et al. Imaging and modeling C2 radical emissions from microwave plasma-activated methane/hydrogen gas mixtures: contributions from chemiluminescent reactions and investigations of higher-pressure effects and plasma constriction[J]. The Journal of Physical Chemistry A,2021,125(19):4184-4199.
[25] SU C H, CHANG C Y. Effect of CH/C2 species density on surface morphology of diamond film grown by microwave plasma jet chemical vapor deposition [J]. Materials Transactions,2008,49(6):1380-1384.
[26] YANG Z L,AN K, FENG X R, et al. Explore the growth mechanism of high-quality diamond under high average power density in the MPCVD reactor[J]. Materials Science and Engineering:B,2024,302:117248.
[27] WU J J, HONG F C N. Direct identification of diamond growth precursor using almost pure CH4 or C2H2 near growth surface [J]. Applied Physics Letters,1997,70(2):185-187.
[28] RABEAU J R,JOHN P, WILSON J I B,et al. The role of C2 in nanocrystalline diamond growth[J]. Journal of Applied Physics,2004,96(11):6724-6732.
[29] SANKARAN R M,GIAPIS K P. High-pressure micro- discharges in etching and deposition applications [J]. Journal of Physics D:Applied Physics,2003,36(23):2914-2921.
[30] HARUTA Y,FUJIMOTO K,HORITA S,et al. Time evolution in radiation intensities of C2 and H spectra in Ar/CH4/H2 pulse modulated induction thermal plasmas for diamond film deposition [J]. Journal of Physics:Conference Series,2013,441:012017.
[31] 翁俊,周程,刘繁,等.甲烷与氢气的流量比在高功率下对金刚石膜生长的影响[J].表面技术,2018,47(11):202-209.
[32] SHIMIZU T,IIZUKA S,KATO K,et al. High quality diamond formation by electron temperature control in methane-hydrogen plasma [J]. Plasma Sources Science and Technology,2003,12(4):S21-S25.
[33] ZHAO H Y, LI B W, WANG Z W, et al. Effect of nitrogen-hydrogen co-doping on diamond growth [J]. International Journal of Refractory Metals and Hard Materials,2023,117:106410.
[34] ZAITSEV A M,KAZUCHITS N M,KAZUCHITS V N,et al. Nitrogen-doped CVD diamond:nitrogen concentration,color and internal stress [J]. Diamond and Related Materials,2020,105:107794.